国学网-国学经典-国学大师-国学常识-中国传统文化网-汉学研究移动版

首页 > 传统文化 > 科技 > 古代数术 >

从记数法到复数域:数系理论的历史发展(2)

四、 实数理论的完善
    无理数的发现,击碎了Pythagoras学派“万物皆数”的美梦。同时暴露出有理数系的缺陷:一条直线上的有理数尽管是“稠密”,但是它却漏出了许多“孔隙”,而且这种“孔隙”多的“不可胜数”。这样,古希腊人把有理数视为是连续衔接的那种算术连续统的设想,就彻底的破灭了。它的破灭,在以后两千多年时间内,对数学的发展,起到了深远的影响。不可通约的本质是什么?长期以来众说纷纭。两个不可通约量的比值也因其得不到正确的解释,而被认为是不可理喻的数。15世纪达芬奇(Leonardo da Vinci, 1452- 1519) 把它们称为是“无理的数”(irrational number),开普勒(J. Kepler, 1571- 1630)称它们是“不可名状”的数。这些“无理”而又“不可名状”的数,找到虽然在后来的运算中渐渐被使用,但是它们究竟是不是实实在在的数,却一直是个困扰人的问题。
    中国古代数学在处理开方问题时,也不可避免地碰到无理根数。对于这种“开之不尽”的数,《九章算术》直截了当地“以面命之”予以接受,刘徽注释中的“求其微数”,实际上是用10进小数来无限逼近无理数。这本是一条完成实数系统的正确道路,只是刘徽的思想远远超越了他的时代,而未能引起后人的重视。不过,中国传统数学关注的是数量的计算,对数的本质并没有太大的兴趣。(李)而善于究根问底的希腊人就无法迈过这道坎了。既然不能克服它,那就只好回避它。此后的希腊数学家,如欧多克斯(Eudoxus)、欧几里得(Euclid)在他们的几何学里,都严格避免把数与几何量等同起来。欧多克斯的比例论(见《几何原本》第5卷),使几何学在逻辑上绕过了不可公度的障碍,但就在这以后的漫长时期中,形成了几何与算术的显著分离。
    17、18世纪微积分的发展几乎吸引了所有数学家的注意力,恰恰是人们对微积分基础的关注,使得实数域的连续性问题再次突显出来。因为,微积分是建立在极限运算基础上的变量数学,而极限运算,需要一个封闭的数域。无理数正是实数域连续性的关键。
    无理数是什么?法国数学家柯西(A.Cauchy,1789- 1875)给出了回答:无理数是有理数序列的极限。然而按照柯西的极限定义,所谓有理数序列的极限,意即预先存在一个确定的数,使它与序列中各数的差值,当序列趋于无穷时,可以任意小。但是,这个预先存在的“数”,又从何而来呢?在柯西看来,有理序列的极限,似乎是先验地存在的。这表明,柯西尽管是那个时代大分析学家,但仍未能摆脱两千多年来以几何直觉为立论基础的传统观念的影响。
    变量数学独立建造完备数域的历史任务,终于在19世纪后半叶,由维尔斯特拉斯(Weierstrass,1815- 1897)、戴德金(R.Dedekind1831- 1916)、康托(G.Cantor,1845- 1918)等人加以完成了。
    1872年,是近代数学史上最值得纪念的一年。这一年,克莱因(F.Kline,1849- 1925)提出了著名的“埃尔朗根纲领”(Erlanger Programm),维尔斯特拉斯给出了处处连续但处处不可微函数的著名例子。也正是在这一年,实数的三大派理论:戴德金“分割”理论;康托的“基本序列”理论,以及维尔斯特拉斯的“有界单调序列”理论,同时在德国出现了。
    努力建立实数的目的,是为了给出一个形式化的逻辑定义,它既不依赖几何的含义,又避免用极限来定义无理数的逻辑错误。有了这些定义做基础,微积分中关于极限的基本定理的推导,才不会有理论上的循环。导数和积分从而可以直接在这些定义上建立起来,免去任何与感性认识联系的性质。几何概念是不能给出充分明白和精确的,这在微积分发展的漫长岁月的过程中已经被证明。因此,必要的严格性只有通过数的概念,并且在割断数的概念与几何量观念的联系之后才能完全达到。这里,戴德金的工作受到了崇高的评价,这是因为,由“戴德金分割”定义的实数,是完全不依赖于空间与时间直观的人类智慧的创造物。
    实数的三大派理论本质上是对无理数给出严格定义,从而建立了完备的实数域。实数域的构造成功,使得两千多年来存在于算术与几何之间的鸿沟得以完全填平,无理数不再是“无理的数”了,古希腊人的算术连续统的设想,也终于在严格的科学意义下得以实现。
    五、 复数的扩张
    复数概念的进化是数学史中最奇特的一章,那就是数系的历史发展完全没有按照教科书所描述的逻辑连续性。人们没有等待实数的逻辑基础建立之后,才去尝试新的征程。在数系扩张的历史过程中,往往许多中间地带尚未得到完全认识,而天才的直觉随着勇敢者的步伐已经到达了遥远的前哨阵地。
    1545年,此时的欧洲人尚未完全理解负数、无理数,然而他们智力又面临一个新的“怪物”的挑战。例如卡丹在所著《重要的艺术》(1545)中提出一个问题:把10分成两部分,使其乘积为40。这需要解方程x (10-x) = 40,他求得的根是 和 ,然后说“不管会受到多大的良心责备,”把 和 相乘,得到25—(—15)= 40。于是他说,“算术就是这样神妙地搞下去,它的目标,正如常言所说,是有精致又不中用的。”笛卡尔(Descartes,1596-1650)也抛弃复根,并造出了“虚数”(imaginary number)这个名称。对复数的模糊认识,莱布尼兹(Leibniz,1646- 1716)的说法最有代表性:“圣灵在分析的奇观中找到了超凡的显示,这就是那个理想世界的端兆,那个介于存在与不存在之间的两栖物,那个我们称之为虚的—1的平方根。”
    直到18世纪,数学家们对复数才稍稍建立了一些信心。因为,不管什么地方,在数学的推理中间步骤中用了复数,结果都被证明是正确的。特别是1799年,高斯(Gauss,1777- 1855)关于“代数基本定理”的证明必须依赖对复数的承认,从而使复数的地位得到了近一步的巩固。当然,这并不是说人们对“复数”的顾虑完全消除了。甚至在1831年,棣莫甘(De Morgan,1806- 1871) 在他的著作《论数学的研究和困难》中依然认为:
    已经证明了记号 是没有意义的,或者甚至是自相矛盾或荒唐可笑的。然而,通过这些记号,代数中极其有用的一部分便建立起来的,它依赖于一件必须用经验来检验的事实,即代数的一般规则可以应用于这些式子(复数)。……
    我们知道,18世纪是数学史上的“英雄世纪”,人们的热情是如何发挥微积分的威力,去扩大数学的领地,没有人会对实数系和复数系的逻辑基础而操心。既然复数至少在运算法则上还是直观可靠的,那又何必去自找麻烦呢?
    1797年,挪威的韦塞尔(C. Wessel,1745-1818) 写了一篇论文“关于方向的分析表示”,试图利用向量来表示复数,遗憾的是这篇文章的重大价值直到1897年译成法文后,才被人们重视。瑞士人阿甘达(J. Argand ,1768-1822) 给出复数的一个稍微不同的几何解释。他注意到负数是正数的一个扩张,它是将方向和大小结合起来得出的,他的思路是:能否利用新增添某种新的概念来扩张实数系?在使人们接受复数方面,高斯的工作更为有效。他不仅将 a+ bi 表示为复平面上的一点 ( a, b),而且阐述了复数的几何加法和乘法。他还说,如果1, —1 和 原来不称为正、负和虚单位,而称为直、反和侧单位,那么人们对这些数就可能不会产生种种阴暗神秘的印象。他说几何表示可以使人们对虚数真正有一个新的看法,他引进术语“复数”(complex number)以与虚数相对立,并用 i 代替 。
    在澄清复数概念的工作中,爱尔兰数学家哈米尔顿(Hamilton,1805 – 1865) 是非常重要的。哈米尔顿所关心的是算术的逻辑,并不满足于几何直观。他指出:复数a+ bi 不是 2 + 3意义上的一个真正的和,加号的使用是历史的偶然,而 bi 不能加到a 上去。复数a+ bi 只不过是实数的有序数对(a,b),并给出了有序数对的四则运算,同时,这些运算满足结合律、交换率和分配率。在这样的观点下,不仅复数被逻辑地建立在实数的基础上,而且至今还有点神秘的 也完全消除了。
    回顾数系的历史发展,似乎给人这样一种印象:数系的每一次扩充,都是在旧的数系中添加新的元素。如分数添加于整数,负数添加于正数,无理数添加于有理数,复数添加于实数。但是,现代数学的观点认为:数系的扩张,并不是在旧的数系中添加新元素,而是在旧的数系之外去构造一个新的代数系,其元素在形式上与旧的可以完全不同,但是,它包含一个与旧代数系同构的子集,这种同构必然保持新旧代数系之间具有完全相同的代数构造。当人们澄清了复数的概念后,新的问题是:是否还能在保持复数基本性质的条件下对复数进行新的扩张呢?答案是否定的。当哈米尔顿试图寻找三维空间复数的类似物时,他发现自己被迫要做两个让步:第一,他的新数要包含四个分量;第二,他必须牺牲乘法交换率。这两个特点都是对传统数系的革命。他称这新的数为“四元数”。“四元数”的出现昭示着传统观念下数系扩张的结束。1878年,富比尼(F.Frobenius, 1849 – 1917) 证明:具有有限个原始单元的、有乘法单位元素的实系数先行结合代数,如果服从结合律,那就只有实数,复数和实四元数的代数。
    数学的思想一旦冲破传统模式的藩篱,便会产生无可估量的创造力。哈米尔顿的四元数的发明,使数学家们认识到既然可以抛弃实数和复数的交换性去构造一个有意义、有作用的新“数系”,那么就可以较为自由地考虑甚至偏离实数和复数的通常性质的代数构造。数系的扩张虽然就此终止,但是,通向抽象代数的大门被打开了。(作者:纪志刚)
    参考文献 
    [1] Tobias Dantzing. Number The Language of Science. London. George Allen & Unwin Ltd. 1938
    [2] Carl Boyer. A History of Mathematics, New York: John Wiley & Sons, Inc. 1968.
    [3] Morris Kline. Mathematical Thought from Ancient to Modern Times, Oxford University Press, 1972.
    [4] ----. Mathematics The Loss of Certainty ,Oxford University Press, 1980.
    [5] E.T.Bell: Men of Mathematics, Dover Publications, New York,1937.
    [6] R.Courant & H. Robbins. What is Mathematics, Oxford University,1978.
    [7] P.Benacerraf & H. Putnam. Philosophy of Mathematics (Selected Readings), Prentice-Hall, Inc. 1964.
    [8] H.Eves. An Introduction to the History of Mathematic, New York, 1964.
    [9] Philip Kitche. The Nature of Mathematical Knowledge, Oxford University Press,1983
    [10] 李约瑟. 中国科学技术史, 第三卷 数学. 北京: 科学出版社. 1978年
    [11] 李文林. 数学史教程,北京:高等教育出版社,2000年.. 
    [12] 李文林主编. 数学珍宝,北京:科学出版社,1998年.
    [13] 李继闵. 九章算术及其刘徽注研究. 西安: 陕西人民教育出版社. 1990年 
    [14] 纪志刚. 南北朝隋唐数学. 石家庄: 河北科学技术出版社. 2000年
    [15] 纪志刚. 分析算术化的历史回溯. 自然辩证法通讯. 2003年第4期
    [16] 王建午, 曹之江, 刘景麟. 实数的构造理论. 北京: 人民教育出版社. 1981年 (责任编辑:admin)