4.进出经济学 现在查到芒德勃罗一共发表18篇经济学论文(也许会有几篇的出入),发表时间集中在1959年至1973年。综观芒氏的论文和专著,他只关心一个核心的经济问题——收入分布以及与之有关的价格问题。据他本人讲,他对经济学中的帕累托(Vilfredo Pareto,1848—1923)分布的研究从1957年在哥伦比亚大学和康奈尔大学的时期就开始了,然后在法国里尔大学和综合工科学校继续了这项工作。1973年以后他义无返顾地离开了经济学,专心发展“分形几何学”。与在其他学科一样,经济学界并没有轻易接受他的非正统观点,但芒德勃罗已经得到自己想得到的东西,他并不在乎经济学界当时能否承认他。 芒德勃罗的经济学研究在经济学团体内引起过两次巨大风波,一次是在60年代末,一次是在80年代末。第一次是因为芒氏的观点攻击了当时占支配地位的计量经济学和资产定价理论,第二次是因为芒氏在非线性动力学运动中出尽风头,经济学家受“混沌”的影响,间接评论了芒氏的早期研究工作。两次反响的主流都是怀疑芒氏的理论和方法,即使有一些人受芒氏论文的激励,转而注意自己未曾考虑的方面,也不相信芒氏的理论。 芒德勃罗最早关注经济学问题是从关于收入分配的帕累托定律(Paretos law)开始的,这个定律的形式颇像他在语言学词频分布中注意到的齐普夫定律(G.K.Zipfs law)。意大利经济学家帕累托曾专门分析过收入分布数据,他发现收入分布具有如下特点:收入水平越高,则收入高于这一水平的人口越少。他当时认定收入分布对于人为干预是不变的。芒德勃罗的经济论文发表后,经济学界不以为然。正统经济学家认为数据拟合得并不佳,并且认为芒氏的理论需要微观证据。芒德勃罗看重的不是数据拟合到何种程度, 而是收入分布的长时尾(fattai-ls)现象在尺度变换下具有不变性,即个人收入分布、厂商尺度的收入分布和城市尺度的收入分布都具有这样的“尾巴”。“长时尾”现象暗示存在一种非高斯意义上的稳定分布。芒德勃罗熟悉他老师莱维的工作,立即将它与莱维的“稳定分布”联系起来。 简单说来,稳定分布的含义是,多个独立同分布随机变量序列经过适当的线性总和后,其分布仍然保持不变。稳定分布是无穷可分的,对应于稳定分布的随机过程是稳定过程。稳定分布是比正态分布更广泛的一类分布,其中包含了正态分布。标准正态分布与正态分布都是稳定分布,柯西分布也是一种稳定分布,除此之外还有没有别的重要的稳定分布呢?这正是芒德勃罗急于思考的。 芒德勃罗的经济模型中具有尺度变换下的“不变性”,他认为这十分关键,仅仅凭这一点就值得认真研究。他认为负幂律分布是除了高斯正态稳定分布外最简单、最值得考虑的一种稳定分布。它就像玻意耳(Boyle)的气体模型一样,可能与实际有些差别, 但它是一种重要类型,一种简单的理想情况,只有研究清楚了这种理想情况,才能推而广之从而考虑更复杂的情形。正如我们不能说理想气体(id eal gas)模型没有价值,也不能说帕累托-莱维分布过于理想化而没有实用价值一样。从这种意义上看,经济学界对他的反驳其实均不构成威胁。芒德勃罗是从逻辑分类的角度、从数学可能性的角度思考问题的,其模型撇开经验事实仍然具有理论价值。实际上1963年洛仑兹(Edward Lorenz,1917—)的《确定性非周期流》一文(在非线性科学史上具有重要地位)也具有此性质,洛仑兹方程只是大气运动的一种极度的理论抽象和简化,它甚至可以与实际的大气运动无关,但仍然具有重要理论意义和间接的实际意义。也正因为如此,芒德勃罗与洛仑兹的理想模型的应用也就不限于什么经济学或者气象学,而具有普遍性,可以扩展到相当多的学科。芒德勃罗实际上也是这样做的,他不久后就将莱维稳定过程用于湍流研究,特别强调了“莱维飞行”,现在看来他的确是先行者,历史将公正地记录下他的先驱性工作。 以棉花价格波动为例来讲,芒德勃罗的理论的特点在于,它不是考虑在某一个特定层次产生价格变动的规律,而是跨越层次,寻求尺度变换下的不变性。棉花价格是一种理想的数据源,经济学家对其变动的传统看法是,短期变化与长期变化没有关联,由快涨落导致的瞬间价格变化是随机的,而长期的价格波动是由于显然的宏观经济形势和战争之类重要事件决定的。因此传统经济学处理此问题的办法是,在确定性的过程中加上随机的噪声。芒德勃罗却把不同层次统一起来,发现日变化曲线与月变化曲线的一致性。对于股票价格,他也作了类似的分析。这未必是最好的理论方法,但至少是一种可能的理论方法,而以前人们确实忽视了它。但经济学界由于长期习惯于自己那一套思路,对芒氏的做法自然有反感,攻击他的最好办法就是指出其曲线拟合不理想。 在研究股票价格变化中,芒氏极为反对“价格连续变化”的模型,认为这种照搬牛顿力学于经济学不济于事。在经济系统中,小的连续变化可以引起突然的不连续变化。基于这种考虑他否定了滤波预测方案和各种人为凑出高斯分布的办法。在经济学研究中他提出了标度原理。 设X(t)为价格,logX(t)是独立增量过程,即logX(t+d )-logX(t)具有独立于d的分布,其中只需引入一个标度因子。芒氏立即想用此模型得出一些有意义的结果,但首先要面对的是这种模型的奇怪性质(实际上这竟是他所期望的)。芒氏大胆地假设logx(t+d )-togx(t)“无穷方差”!他第一次用符号V表示方差。以前人们想当然地假设方差是有限量,发散的情况根本不予考虑,也不应该考虑。用芒氏语言讲,人们似乎患了“无穷方差综合症”。具有反叛色彩的芒氏假定V=∞自有他的考虑:“不用说,假定υ=∞的成功后果是, “我就很容易使曲线具有无穷长度、曲面具有无穷面积。”于是后来提到的“英国海岸线长度”、皮亚诺曲线填充、柯赫雪花曲线长度等问题都有了理论基础,当然其他思想渊源也曾帮助他得到了那些结果。但作者认为,海岸线问题是后来的事。那时他已经有了基本结论,他不断翻阅数学“故纸堆”,也不断发现一些阐述得更佳的论述,但这些新发现的材料当初对于他形成基本的分形思想并未产生影响。在撰写专著时,他当然要重新规划,以一种更直接、更通俗、更符合逻辑顺序(发现过程并不符合通常的逻辑)的方式叙述出来,甚至更多的是考虑读者的反应。 到了80年代经济学界受非线性动力学的影响不得不对芒氏的早期研究作出评介,在此之前克拉克(P.Clark )的博士论文以及后来的自回归条件异方差(ARCH)、广义自回归条件异方差(GARCH )模型回避了芒德勃罗开创的路线,仍然假设噪声服从于一种基本的高斯分布,但有一个变化的二阶矩。他们的文章引用了芒氏的假设,但设法避免那类假设。但这种处理方法仍然没有逃出分数阶自回归滑动平均(ARIMA )的套路。到后来,许多经济学家更多地采用GP关联积分算法求时间序列的分维数,用BDS统计(Brock—Dechert—Scheinkman 三人在关联积分的基础上发明的)检查经济系统中是否存在非线性结构。但是正如米诺夫基指出的,经济学界的这些人物并没有认真吸收芒德勃罗的思想,而是应付、回避矛盾,他们既排斥莱维稳定分布也排斥混沌。芒德勃罗早已摒弃了“不是决定论就是随机论”的两极化选择,他认为经济现象比较复杂,应当用更精致的随机过程或者混沌动力学描述,应当放弃牛顿经典力学的套路:由原子运动推出一切。本质上在经济学问题上芒德勃罗采用的是一种类似统计物理/热力学的现象学的方法,这一性质还未被经济学界深入理解。 当芒德勃罗离开经济学时,他得到了什么?他似乎高兴地带走了价格变动的自相似观点、标度律的观点,以及一种似乎无人注意但有着各种潜在应用价值的“莱维稳定分布”。 (责任编辑:admin) |