为了较精确表述起见,我将“逻辑内容[,1]”定义为可使有效推理的前后件都具有真值的原子事态如p、q、r等, 由这类原子事态所组成的复合事态如p∧q等亦属这个范畴;将“逻辑内容[,2]”定义为只使有效推理的前后件之一个具有真值而不能使另一个也具有真值的(原子)事态。再以p→p∨q(2)为例,p可使(2)之前后件都具有真值,当p出现时,其前后件都为真,故p对(2)而言是逻辑内容[,1]。另一方面,q只能使(2)之后件p∨q具有真值,却不能使其前件p具有真值,因 为p的真值与q是否出现无关,q对于(2)即是逻辑内容[,2]。具体说来,(6)可改写成p←→p∧(q∨q)(8),而(8)之左支所排对象为p,其右支所排对象为p∨(q∧q),在这里对(8)而言,由于其左右支都排除了p,故p是逻辑内容[,1];而(q∧q)则涉及到了可能事态q。因为q∧q作为复合命题虽表示不可能事态, 但其由以构成的原子命题却涉及了可能事态q,这一点在推论中对有关命题的逻辑内容的确定起到了重要的作用。如果说任何命题的确立都是以否定矛盾式为前提的,那么(8)之左支p所排除的矛盾式应是(p∧p)而不是(q∧q)。简而言之,(8)之左右支所排逻辑内容[,1]相同,但其所排逻辑内容[,2]却不同。联系到前面对等值式的讨论,可知等值命题之左右支所排逻辑内容[,1]是相同的,可如涉及了逻辑内容[,2][像(8)那样],则它们所排逻辑内容[,2]自然并不相同。如此说来,(8 )之左右支的逻辑内容[,1]相同,但其右支涉及了作为逻辑内容[,2]的q,其左支与q无关,故(8)之右支的逻辑内容[,2]大于其左支的逻辑内容[,2]。由此可知,诸逻辑等值命题的逻辑内容[,1]必相同;但如果其中一命题论及了而另一命题却没有论及逻辑内容[,2],则当然前一命题的逻辑内容[,2]大于后一命题的逻辑内容[,2]。这样,回过头来再考察前面所述的那个反例,即可看出,p的逻辑内容[,2]小于(p∨q)∧(p∨q)的逻辑内容[,2];但它们的逻辑内容[,1]则相同,这使得p和(p∨q)∧(p∨q)在有效推理中可互相等值地代换而不影响推理的有效性。这就说明了何以p→p∨q(2)是并非同义反复的重言式,而从(2)通过(6)推导出的(p∨q)∧(p∨q)→p∨q(7 )却是同义反复的重言式的缘故。因为p∨q的逻辑内容[,2]大于p的逻辑内容[,2], 尽管它们的逻辑内容[,1]相同,因此p→p∨q(2)是逻辑内容扩大的重言推理。另一方面,(7)之前件(p∨q)∧(p∨q)的逻辑内容[,1]大于其后件p∨q的逻辑内容[,1],由于(7)的前后件涉及的事态完全相同,使得(7)没有逻辑内容[,2],故(7)是同义反复的重言式。而由(2)的非同义反复性推出(7)的同义反复性,乃是利用了(6 )的逻辑内容[,2]之扩大性的缘故,换言之,在通过(6 )从逻辑内容上具有非同义反复性的(2)推出(7)的过程中,就将(6 )的所扩大了的逻辑内容代入了(2)之前件从而得出了(7)的同义反复性。至此即可得出,(2)和(3)p→(q→p )的并非同义反复性都导源于它们的逻辑内容[,2]的扩大。(3)之后件所排对象为q∧p,其前件所排对象为p,所以其后件在逻辑内容[,2]上大于其前件。p→(p→q)(9)的情况也一样,(9)之前件所排对象为p,其后件所排对象为p∧q,故(9)之后件的逻辑内容[,2]大于其前件的逻辑内容[,2]。另一方面,以p∧q→p(10)为例,其前件所排对象p∨q, 其后件所排对象是p,因此(10)之前后件的逻辑内容[,1]相同,可其前件的逻辑内容[,2]大于其后件的逻辑内容[,2],故(10)是同义反复的。 综上所述,我们似已有较充分的理由作出如下推断:有效逻辑推理在逻辑内容上有不扩大(同义反复)的和扩大(非同义反复)的两类。有效推理的逻辑内容[,1]必不是扩大的;而凡是并非同义反复的有效推理,其逻辑内容的扩大必是其逻辑内容[,2]的扩大之所致。从理论上讲,这是因为根据有效推理的逻辑本性,其前件为假的真值条件的数目不可能少于其后件为假的真值条件的数目,否则即为无效推理。这事实使得有效推理的逻辑内容[,1]必不是扩大的;换言之,有效推理的必然保真性使得其逻辑内容[,1]必具不扩大性。此外,这事实并不排斥有效推理在逻辑内容[,2]上的可扩大性;换言之,其逻辑内容[,2]的可扩大性,使得有效推理可具有必然保真的并非同义反复性。事实上,我们现在已有理由断言,大部分重要的重言式都因此而具有非同义反复性。 (责任编辑:admin) |